
MLC

..- -.- . ... ..-. / -- --- .-. ... . / -- . ... ...

. -. --. . .-. 

TRANSMITTING
HARDER



Before the world had smartphones, email, or even the humble
landline, there was Morse code. Developed in the early 19th
century, this revolutionary system of dots and dashes - often
used by spies - was a way of encoding data such that it could
be transmitted across oceans, via radio, and decoded by
humans.

The table below shows how each character of the alphabet
was encoded by a series of dots and dashes. Notice how the
letter ‘E’ is a single dot, as this is the most frequent letter used
in commination. On this page alone there are 62 occurrences
of ‘e’.



MLC

As a transmitter you will be sending a message to your partner
for them to decode, but we first need a way for our processor
to know what message you wish to send.

To get started we’re going to go back about 150 years and
use Morse code. This relied on the timings of each pulse of
light to represent either a dot or a dash, a dot being a short
pulse and a dash being a longer one. A small delay was used
to represent a space between two characters which when
written out is represented by a forwards slash. For an
example, look at the front cover. 

Firstly download the code stubs and dependent libraries from
the following URL. If you already have an instance of a given
library on your device, you won’t need to install it again!



Open the code in the Arduino IDE and find the following
subroutines, you will be editing all 3.

Morse code relied entirely on timings to distinguish between a
dot and a dash and we’re going to use that same principle.

The first subroutine, InputMorse(), returns the full message to
be transmitted after a specified time of user inactivity has
passed. Using the pre-set values for timings, the device must
be inactive for 6 seconds before sending the message.

The second subroutine, AppendNewMorseSegment(), is
called by InputMorse() and returns a String of the Morse
segment the user has just entered. This is added to the full
transmission after 2 seconds of inactivity.

The final subroutine, DetermineInput(), is called by
AppendNewMorseSegment() and is used to determine if the
user is entering a short press (a dot) or a long press (a dash).



MLC

Inside the UKESFMorse.h header file, there is a pre-written
Timer() class. You can create instances of a timer and call the
respective methods anywhere in the program scope. The
syntax is show below:



Lets work through the first subroutine, InputMorse(), together.

For this subroutine, while the device has been inactive
(received no input) for less than 4 seconds (LongWait), we
want to check if the button is being pressed, and if so add the
input to our transmission.

For this we’ll first need to instantiate a new timer outside of
any loops and use it in our while() loop condition.

Task 1: Replace the 0 in while(0) with a coded version of
“while the timer reads less than LongWait”.



MLC

Task 2: We now want to read if the button has been pressed.
You may have noticed in the Setup() function we set the
ButtonPin pin mode to INPUT_PULLUP, this stops the pin from
“floating” using an internal pullup resistor and means that
when we press the button, its state reads LOW.

See if you can make some changes to the code below and
add it to your subroutine in place of if(0)!

Task 3: The final part of this subroutine is resetting the timer
so that it doesn’t forever read as inactive.
Where should you use the .Reset() method in this subroutine?
Bearing in mind that the timer is used to measure how long the
device has received no button input.

Good job! You seem to be getting the hang of this, so we’ll
give you a little bit less guidance for the second subroutine.

You will again need to instantiate a new timer and use this in
the while() loop condition and reset it if a button input is
successfully read.



It might help to first look at the DetermineType() subroutine
and notice that if it returns -1, this is classed as an invalid
button press and should be ignored.

This is because of a feature of the button meaning that when
its pressed it might get stuck and accidently record a single
button press as two, that’s where debouncing comes in.

Debouncing an input refers to filtering out very short presses
sometimes with a capacitor or in this case with some code.

In the DetermineInput() subroutine you’ll notice that if the
duration of our ,press adjusted for with the DebounceError, is
less than 0, we reject it and that’s the same as filtering out
these short presses that occur because of how the button is
manafactured.



MLC

This final subroutine, DetermineType(), is a little different. We
still need to instantiate a timer but this time it won’t come up
in our while() loop.

Instead while the button is pressed we just want the timer to
count, and when its finished we want to calculate how long it
was pressed for, whilst accounting for our DebounceError and
then assign this duration to the variable “Period”.

These are the default values chosen for you, but change, at
least, the channel to a value that your other classmates aren’t
using, this will ensure only your partner receive the intended
message, not your classmates. 

Make sure both you and your partner are using the same
address (any 5 bit binary number) and the same channel
(any integer between 0 and 255)



Try playing around with the values of LongWait, InputTime and
ShortPress. See how this affects the device! Or maybe set up
some additional Morse characters with your partner, like a
space, exclamation mark, or even emoji!

If you’re interested in the rest of the code click on the
UKESFMorse.h tab near the top of the IDE, here you can see
where other libraries and subroutines have been implemented!

This is the NRF24L01 transceiver. It’s a 2.4GHz radio module used for
communication, some older phones would’ve used a similar circuit!

This is a logic level converter
which allows the radio module to
communicate with the
microprocessor beneath it. See if
you can find out why the
NRF24L01 radio module requires
a logic level converter when used
with the Seeeduino Lotus



MLC

Radio waves at 2.4GHz are part of the microwave spectrum,
widely used in wireless communication. The “GHz” measures
frequency—2.4GHz equals 2.4 billion cycles per second!
Signals at this frequency have become essential in modern
technologies.

One common application is Wi-Fi, which often operates in the
2.4GHz band. This frequency is favoured for its ability to travel
farther and penetrate obstacles like walls, compared to higher
frequencies. Bluetooth devices also utilize 2.4GHz signals to
connect wirelessly, making it integral to smart gadgets and
wearable tech.

However, because many devices use 2.4GHz, interference can
sometimes occur, affecting signal performance. But by using
different channels which use very slightly different frequencies
or bands, we can filter out the noise by only listening to the
frequency we want!




