
MLC

..- -.--. / -- --- .-. / --

. -. --. . .-.

RECIEVING
EASIER

Before the world had smartphones, email, or even the humble
landline, there was Morse code. Developed in the early 19th
century, this revolutionary system of dots and dashes - often
used by spies - was a way of encoding data such that it could
be transmitted across oceans, via radio, and decoded by
humans.

The table below shows how each character of the alphabet
was encoded by a series of dots and dashes. Notice how the
letter ‘E’ is a single dot, as this is the most frequent letter used
in commination. On this page alone there are 64 occurrences
of ‘e’.

MLC

As a receiver you will be receiving a message from your
partner that you will need to decode. Your partners message
will be transmitted to your device in Morse code and your job
is to translate this into comprehensive English.

Firstly download the code stubs and dependent libraries from
the following URL. If you already have an instance of a given
library on your device, you won’t need to install it again!

Open the code in the Arduino IDE and find the subroutine
below.

For example, The string:

...././.-../.-../---/.--/---/.-./.-../-../

Would translate to:

HELLOWORLD

If you’re unsure where to begin, consider looking up parallel
arrays and substrings for Arduino, specifically the String()
class. How this could benefit you here?

This will be the function you are editing. You will have noticed
the function takes in the encoded Morse message and return
a String, ideally the translated English string.

That’s where you come in.
Write a function to convert a string of Morse code into English.
You may assume the message only consists of the following
characters. (No Spaces)

DOT
(Full Stop)

DASH
(Hyphen)

SLASH
(Forwards Slash)

MLC

Upload the code and test it by pressing the input button on
your board, your should see a “CONGRATULATIONS” scroll
across the screen. If so, wait for your partner to send you a
message and have fun!

These are the default values chosen for you, but change, at
least, the channel to a value that your other classmates aren’t
using, this will ensure only you receive the intended message,
not your classmates.

Or perhaps try to intercept one of their messages, like a real
spy! To do this, you’ll have to figure out which channel and
address your target is using, without drawing suspicion to
yourself. Good Luck!

Make sure both you and your partner are using the same
address (any 5 bit binary number) and the same channel
(any integer between 0 and 255)

This is the NRF24L01 transceiver. It’s a 2.4GHz radio module used for
communication, some older phones would’ve used a similar circuit!

This is a logic level converter
which allows the radio module to
communicate with the
microprocessor beneath it. See if
you can find out why the
NRF24L01 radio module requires
a logic level converter when used
with the Seeeduino Lotus

What if your partner sends over a sequence of dots and
dashes that have no English equivalent? How can you alter
your code to handle these mishaps?

If you’re interested in the rest of the code click on the
UKESFMorse.h tab near the top of the IDE, here you can see
where other libraries and subroutines have been implemented!

MLC

Radio waves at 2.4GHz are part of the microwave spectrum,
widely used in wireless communication. The “GHz” measures
frequency—2.4GHz equals 2.4 billion cycles per second!
Signals at this frequency have become essential in modern
technologies.

One common application is Wi-Fi, which often operates in the
2.4GHz band. This frequency is favoured for its ability to travel
farther and penetrate obstacles like walls, compared to higher
frequencies. Bluetooth devices also utilize 2.4GHz signals to
connect wirelessly, making it integral to smart gadgets and
wearable tech.

However, because many devices use 2.4GHz, interference can
sometimes occur, affecting signal performance. But by using
different channels which use very slightly different frequencies
or bands, we can filter out the noise by only listening to the
frequency we want!

